- 22:30 就寢
和前任聖殿何於振會長 Skype 討論紐約傳道部中文家譜訓練
- 20:30-20:55
- 向何會長介紹台灣家譜認證活動的概況,包括 Family Search 教學影片,學習歷程表,學習單,以及臉書和部落格的宣傳和紀錄。
2017年6月29日 星期四
Database Systems Concepts & Design Lesson 1-3
- 12:30-16:30
- Udacity:Database Systems Concepts & Design (36% VIEWED)
2017年6月27日 星期二
與何於振長老 Skype 討論如何幫助紐約傳道部區域內的青少年遠離電動玩具,善用時間學習。
- 7:40-8:40
- 我分享了下列主題:
- Camtasia Studio
- Code Club
- Hot Dog & Homework
- Quizlet
- limingyu2007.com
2017年6月21日 星期三
和蕭昶欣檢閱摩爾門經的故事英文分句語音檔的進度
- 10:20-12:50
- 並試驗匯出 Semantic Media Wiki 類別為 BOMSS 的 XML 檔案,以作為 limingyu2007.com 網站的內容備份。
- 重申要幫助青少年追求卓越的志向,以協助建立神的國。
- 與昶欣分享我將在頭份支會開辦青少年學程式設計課程。
初探 Artificial neural networks 與 Deep Learning (來源 wikipedia)
- 偶然發現 AppCoda 寄來電郵,標題為 XCode 9 新功能以及 Core ML 教學,覺得好奇,在閱讀文章中發現有許多先備知識不足,於是開始了一趟未知領域的知識探索旅程。以下是全新領域的文章與連結。
- Artificial neural networks (ANNs) or connectionist systems are computing systems inspired by the biological neural networks that constitute animal brains. Such systems learn (progressively improve performance) to do tasks by considering examples, generally without task-specific programming. For example, in image recognition, they might learn to identify images that contain cats by analyzing example images that have been tagged "cat" or "no cat" and using the analytic results to identify cats in untagged images. They have found most use in applications difficult to express in a traditional computer algorithm using rule-based programming.
- Neural networks have been used on a variety of tasks, including computer vision, speech recognition, machine translation, social network filtering, playing board and video games, medical diagnosis and in many other domains.As of 2017, neural networks typically have a few thousand to a few million units and millions of connections. Their computing power is similar to a worm brain, several orders of magnitude simpler than a human brain. Despite this, they can perform functions (e.g., playing chess) that are far beyond a worm's capacity.
- In machine learning, support vector machines (SVMs, also support vector networks[1]) are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis. Given a set of training examples, each marked as belonging to one or the other of two categories, an SVM training algorithm builds a model that assigns new examples to one category or the other, making it a non-probabilistic binary linear classifier (although methods such as Platt scaling exist to use SVM in a probabilistic classification setting). An SVM model is a representation of the examples as points in space, mapped so that the examples of the separate categories are divided by a clear gap that is as wide as possible. New examples are then mapped into that same space and predicted to belong to a category based on on which side of the gap they fall.In addition to performing linear classification, SVMs can efficiently perform a non-linear classification using what is called the kernel trick, implicitly mapping their inputs into high-dimensional feature spaces.When data are not labeled, supervised learning is not possible, and an unsupervised learning approach is required, which attempts to find natural clustering of the data to groups, and then map new data to these formed groups. The clustering algorithm which provides an improvement to the support vector machines is called support vector clustering[2] and is often[citation needed] used in industrial applications either when data are not labeled or when only some data are labeled as a preprocessing for a classification pass.
- In statistical modeling, regression analysis is a statistical process for estimating the relationships among variables. It includes many techniques for modeling and analyzing several variables, when the focus is on the relationship between a dependent variable and one or more independent variables (or 'predictors'). More specifically, regression analysis helps one understand how the typical value of the dependent variable (or 'criterion variable') changes when any one of the independent variables is varied, while the other independent variables are held fixed. Most commonly, regression analysis estimates the conditional expectation of the dependent variable given the independent variables – that is, the average value of the dependent variable when the independent variables are fixed. Less commonly, the focus is on a quantile, or other location parameter of the conditional distribution of the dependent variable given the independent variables. In all cases, the estimation target is a function of the independent variables called the regression function. In regression analysis, it is also of interest to characterize the variation of the dependent variable around the regression function which can be described by a probability distribution. A related but distinct approach is necessary condition analysis[1] (NCA), which estimates the maximum (rather than average) value of the dependent variable for a given value of the independent variable (ceiling line rather than central line) in order to identify what value of the independent variable is necessary but not sufficient for a given value of the dependent variable.Regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Regression analysis is also used to understand which among the independent variables are related to the dependent variable, and to explore the forms of these relationships. In restricted circumstances, regression analysis can be used to infer causal relationships between the independent and dependent variables. However this can lead to illusions or false relationships, so caution is advisable;[2] for example, correlation does not imply causation.Many techniques for carrying out regression analysis have been developed. Familiar methods such as linear regression and ordinary least squares regression are parametric, in that the regression function is defined in terms of a finite number of unknown parameters that are estimated from the data. Nonparametric regression refers to techniques that allow the regression function to lie in a specified set of functions, which may be infinite-dimensional.The performance of regression analysis methods in practice depends on the form of the data generating process, and how it relates to the regression approach being used. Since the true form of the data-generating process is generally not known, regression analysis often depends to some extent on making assumptions about this process. These assumptions are sometimes testable if a sufficient quantity of data is available. Regression models for prediction are often useful even when the assumptions are moderately violated, although they may not perform optimally. However, in many applications, especially with small effects or questions of causality based on observational data, regression methods can give misleading results.[3][4]In a narrower sense, regression may refer specifically to the estimation of continuous response variables, as opposed to the discrete response variables used in classification.[5] The case of a continuous output variable may be more specifically referred to as metric regression to distinguish it from related problems.[6]
- 6:15-7:35
2017年6月20日 星期二
2017年6月17日 星期六
新竹支聯會年度家庭探索日活動說明會
- 16:00 竹北教堂
- 主領:范村生會長(支聯會會長團第二諮理)
- 主持:倪廖瑞鳳姊妹
- 出席:家庭探索日主持人和頒獎人員
- 討論人容:頒獎流程、服裝規格、時間規格、頒獎詞規格
和弘志及楊國志討論客服流程改造及業務員訓練
- 16:30-17:30
- 分享我的經驗,包括 IBM, CDC, DEC。並以此說明為何及如何改造客服流程,以及業務員訓練項目和應有的時間點。以 IBM 為例,員工進入公司,不論是否有經驗,要先接受密集訓練三個月。其實在受訓期間也是試用期間,看看員工的學習態及能力,以及瞭解公司產品、客戶、同事、文化和自己未來的發展的方向。讓新進員工具備有效完成任務的能力。
和蕭昶欣繼續推進青少年學英文專案
- 指導昶欣如何將他所斷句的語音檔,上傳至 GCP (Google Cloud Platform) 的 Storage,以及請他開始將分句語音檔連結到 SMW (Semantic MediaWiki),希望在下週二之前完成第1-10章,以支援星期三的青少年學英文:摩爾門經的故事。
- 預期學生在本課程中學會如何運用教會所提供的英文學習資源,採用翻轉學習的態度和方法,並養成習慣,而達成有效提升英文程度成的結果。
指導黃翰洋學習 Excel VBA 和 Quizlet
- 用 Word VBA 程式將中英文文章斷句的例子,說明不同程式語言的設計有一致性的原理。學習程式設計原理的入門程式語言的選擇不那麼重要,真正重要的是要採用問題導向,而非功能導向。也就是說,要用程式來解決問題,在這過程中探索如何運用程式語言指揮電腦言,按照人所設計的演算法來工作。
- 展示 Quizlet 的一個學習集例子。這個例子是我根據摩爾門經的故事英文版所製作的。然後讓翰洋嘗試了幾個功能來體驗 Quizlet 幫助學習英文的效果。
- 9:00-10:50
繼續研究 Scratch 程式設計與教學
- 問題:用天平秤12顆球三次,找出其中唯一重量不同的球。
- 技術:
- 紀錄,語言(符號)可以幫助記憶、推理。
- 邏輯,矛盾與一致、推論。
- Cloning ,本尊與分身。
- Multi-threading,平行處理。
- Message-driven,廣播與收聽。
- Variable(Array),廣域變數(陣列)、區域變數(陣列)。
2017年6月12日 星期一
偶然讀到一篇有關第二次婚姻家庭的財產繼承法規的解釋
讀者某小姐問:
我有兩子,都是老公與前妻所生,他們依法屬於直系血親嗎?我名下房子是我與先生努力所得,我希望在我百年後,全歸我老公所有,若我老公先我而去,我名下的房子,要指定其他用途以做養老之用,應如何立下具有法定效力的遺囑內容?需要到法院公證嗎?
我有兩子,都是老公與前妻所生,他們依法屬於直系血親嗎?我名下房子是我與先生努力所得,我希望在我百年後,全歸我老公所有,若我老公先我而去,我名下的房子,要指定其他用途以做養老之用,應如何立下具有法定效力的遺囑內容?需要到法院公證嗎?
律師吳姿璉答:
丈夫與前妻所生的小孩,依《民法》規定是讀者的姻親,對讀者的遺產並無繼承權。但如果讀者的父母、兄弟姊妹或祖父母還健在,依《民法》第一一四四條規定,他們依序可跟讀者的先生,一起繼承讀者的遺產。
讀者可在遺囑內指定遺產的規劃,例如分配方式或要遺贈給誰等,但遺囑不能違反《民法》第一一八七條規定,侵害繼承人的特留分。
丈夫與前妻所生的小孩,依《民法》規定是讀者的姻親,對讀者的遺產並無繼承權。但如果讀者的父母、兄弟姊妹或祖父母還健在,依《民法》第一一四四條規定,他們依序可跟讀者的先生,一起繼承讀者的遺產。
讀者可在遺囑內指定遺產的規劃,例如分配方式或要遺贈給誰等,但遺囑不能違反《民法》第一一八七條規定,侵害繼承人的特留分。
自書遺囑不須公證
《民法》將遺囑分為自書遺囑、公證遺囑、密封遺囑、代筆遺囑及口授遺囑,只要依相關要件製作都屬有效,不一定要經過公證。最簡便的是自書遺囑,由立遺囑者親自書寫遺囑內容,記明年月日再親自簽名,內容若有增減或塗改,要註明增減、塗改處及字數,且在修改處簽名。
如果先後寫了多份遺囑,以最後寫的那份為準。為避免同時存在多份遺囑,造成糾紛,建議讀者若重新寫了遺囑,應將舊的遺囑銷毀。至於讀者的先生若比讀者早過世,讀者名下財產仍是讀者自己的,非屬先生遺產,讀者可照自己想法使用,不需再立遺囑。
如果先後寫了多份遺囑,以最後寫的那份為準。為避免同時存在多份遺囑,造成糾紛,建議讀者若重新寫了遺囑,應將舊的遺囑銷毀。至於讀者的先生若比讀者早過世,讀者名下財產仍是讀者自己的,非屬先生遺產,讀者可照自己想法使用,不需再立遺囑。
轉載自2013年1月9日蘋果日報
靈感紀要
- 1:40-2:40
- 繼續寫曦云的故事
- 《忘了自己是後母》
- 《作夢夢到弘志的客服流程要改善》
- 《得知弘德呼吸終止症馬上匯款買氧氣機》
- 《補償懷玉少分配到的錢》
- 今年暑假將要進行的要事備忘
- 輔導葉致葦的英文和數學
- 在新竹教堂開辦為期8週的《青少年學英文:摩爾門經的故事》
- 在頭份教堂開辦為期8週的《青少年學程式設計:Scratch》
- 為翰洋打事業基礎
- 英文閃卡製作 PowerPoint/Quizlet
- 英文文章分級 Word VBA+Excel VBA+SMW
- 數學 Khan Academy
- 數學 GeoGebra
- 教學影片製作
- iOS App
- 考托福
2017年6月11日 星期日
新竹一支會安息日聚會
- 9:20-10:30 聖餐聚會
- 來自德州的林姊妹即將返鄉,主教團邀請她做見證。
- 白劉詩凡姊妹、彭林郎弟兄和來訪的高級諮議吳忠霖弟兄演講。
- 10:40-11:20 主日學。主題《智慧語》,教師:彭昌宏弟兄
- 11:30-12:20 聖職聚會。主題:總會會長的教訓戈登興革萊會長第11章《家---正義生活的基礎》,教師:吳冠賢弟兄
2017年6月8日 星期四
新竹一支會安息日聚會
- 9:20-10:30 禁食見證聚會
- 主教宣布新竹一支會啟動禁食接力活動。
- 劉宇森被召喚及支持為新竹一支會男青年會長團第一諮理。
- 10:40-11:20 主日學
- 主題:耶穌基督第二次來臨
- 教師:宋巧玉
- 11:30-12:20 聖職聚會
- 主題:興革萊會長的教訓《經營婚姻的永恆夥伴關係》
- 教師:劉邦泓弟兄(大祭司小組領袖)
到燦坤取貨 Mac Mini
- 為了開始學習 iOS App 的程式設計,買了一部 Mac Mini。因為想要有更好的效能,要求16GB 的記憶體,這並非門市的標準規格,所以兩週前購買時,商家向總公司訂貨,今日才到達。
- 15:30 到新竹燦坤取貨,並現場安裝測試。
與蕭昶欣討論推動青少年學英文專案
- 13:00-15:40
- 今日進度:
- 請昶欣用 Sound Organizer 將摩爾門經的故事的英文語音檔分句,以利逐句播放的需求。
- 和昶欣 Review 寄給騉翔的 SMW 版本配置 (Configuration) 及特殊頁面目錄。