2025年2月4日 星期二

多項式,x 位移

 GPT Icon

Yes! Let's perform continuous synthetic division step by step until we get the Nested Division Form of

3x35x27x43x^3 - 5x^2 - 7x - 4

divided by x3.


Step 1: First Synthetic Division

We divide 3x35x27x43x^3 - 5x^2 - 7x - 4 using synthetic division.

Set Up the Synthetic Division Table

  1. Write the coefficients of the polynomial: 3,5,7,43, -5, -7, -4
  2. The divisor is x3x - 3, so we use 3 as the synthetic division factor.
335749121534511\begin{array}{r|rrrr} 3 & 3 & -5 & -7 & -4 \\ & & 9 & 12 & 15 \\ \hline & 3 & 4 & 5 & 11 \\ \end{array}
  • Quotient: 3x2+4x+5
  • Remainder: 1111

Thus, we now divide 3x2+4x+5.


Step 2: Second Synthetic Division

Now, divide 3x2+4x+5.

334593931344\begin{array}{r|rrr} 3 & 3 & 4 & 5 \\ & & 9 & 39 \\ \hline & 3 & 13 & 44 \\ \end{array}
  • Quotient: 3x+13
  • Remainder: 44

Now, divide 3x+133x + 13 by x3x - 3.


Step 3: Third Synthetic Division

Now, divide 3x+133x + 13 by x3.

33139322\begin{array}{r|rr} 3 & 3 & 13 \\ & & 9 \\ \hline & 3 & 22 \\ \end{array}
  • Quotient: 33
  • Remainder: 2222

Step 4: Express in Nested Division Form

Now, we reconstruct the polynomial using the results of the synthetic divisions.

  1. The final quotient is 3.

  2. The previous quotient was 3x+13, which we write as:

    3(x3)+223(x - 3) + 22
  3. The next quotient was 3x2+4x+53x^2 + 4x + 5, which we write using the previous step:

    3(x3)2+22(x3)+443(x - 3)^2 + 22(x - 3) + 44
  4. Finally, including the remainder:

    3(x3)3+22(x3)2+44(x3)+113(x - 3)^3 + 22(x - 3)^2 + 44(x - 3) + 11

Final Answer:

3(x3)3+22(x3)2+44(x3)+11\boxed{3(x - 3)^3 + 22(x - 3)^2 + 44(x - 3) + 11}

This is the Nested Division Form of 3x35x27x43x^3 - 5x^2 - 7x - 4 when divided by x3x - 3.

沒有留言:

張貼留言